
www.manaraa.com

Yale University
EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Medicine Thesis Digital Library School of Medicine

12-7-2006

The Effects of Benzo-α-Pyrene on the Insulin-like
Growth Factor-I Gene
Brittany Albright Epperson
Yale University

Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl

This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

Recommended Citation
Epperson, Brittany Albright, "The Effects of Benzo-α-Pyrene on the Insulin-like Growth Factor-I Gene" (2006). Yale Medicine Thesis
Digital Library. 236.
http://elischolar.library.yale.edu/ymtdl/236

http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fymtdl%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/yale_med?utm_source=elischolar.library.yale.edu%2Fymtdl%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl?utm_source=elischolar.library.yale.edu%2Fymtdl%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ymtdl/236?utm_source=elischolar.library.yale.edu%2Fymtdl%2F236&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


www.manaraa.com

 
 
 
 
 
 
 

The Effects of Benzo-α-Pyrene on the Insulin-like Growth Factor-I Gene 
 
 
 
 
 
 
 
 

A Thesis Submitted to the 
Yale University School of Medicine 

In Partial Fulfillment of the Requirements for the 
Degree of Doctor of Medicine 

 
 
 
 
 
 
 
 

by 
 

Brittiny Albright Epperson 
 

2006 



www.manaraa.com

  

Abstract 
 

 
THE EFFECTS OF BENZO-α-PYRENE ON THE INSULIN-LIKE GROWTH FACTOR-I 

GENE. 

Brittiny A. Epperson and Ahmed M. Fadiel. Department of Obstetrics and Gynecology, Yale 

University, School of Medicine, New Haven, CT. 

 The purpose of this study was to look at the genotoxic and cytotoxic effects of benzo-α-

pyrene (BαP), a chemical mutagen that is present in cigarette smoke, on the insulin-like growth 

factor-I (IGF-I) gene. Women who smoke during pregnancy are more likely to have a growth-

restricted baby. We hypothesized that BαP exerts its effects through genotoxic and cytotoxic 

avenues. The cytotoxicity is manifested by chromosomal abnormalities and a decrease in the rate 

of cell division. The genotoxicity is manifested by changes in certain genes known to be 

important in mammalian fetal development such as IGF-I. IGF-I is implicated in intrauterine 

growth restriction (IUGR), a problem that greatly increases the risk of perinatal morbidity and 

mortality. To futher understand the mechanism by which BαP influences the normal growth and 

development of human placental cells, human placental trophoblast cells from an established 

immortalized cell line were utilized. Cells were cultured in appropriate media, starved (using 

starvation “Serum Free Medium”), and treated with two doses of BαP, 1µM (dose 1) and 5µM 

(dose 2). Chromosomes were prepared for cytogenetic analysis and visualized using light 

microscopy after Giemsa staining. Chromosomal aberrations were identified and the rate of cell 

division was determined through the analysis of the mitotic index for treated cells compared to a 

control group. To further understand the influence of BαP on the IGF-I gene expression level, 

RNA was extracted from control and treated cells, from which cDNA was synthesized and used 

for further analysis using polymerized chain reaction (PCR). The PCR results were used to better 

understand the genotoxicity of BαP, while chromosomal aberration analysis was used to 

determine the cytotoxic effects of BαP on human placental cells. Our results indicate that many 
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chromosomal abnormalities were present in the treated groups compared to the control group. In 

addition, there was a significant decrease in the mitotic index of the BαP-treated cells (MI=0.3%) 

verses the control group (MI=0.93%), p value 0.0447. Through the PCR assay, we speculate that 

there is a dose-related response to BαP of the IGF-I RNA expression level, with low levels in the 

treated groups compared to the control group. We conclude from these results that BαP influences 

placental cells at both the gene and chromosome level. It also affects the cell cycle of human 

placental cells. It is known that smoking is deleterious for fetal development. We believe that the 

current study brings us closer to understanding the mechanism by which smoking can lead to fetal 

growth restriction. 
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Introduction 
 

It has been reported that infants born small for gestational age (SGA) as a result 

of intrauterine growth restriction (IUGR) are at increased risk for, among other disorders, 

cardiovascular disease as adults. This is termed Fetal Origin of Adult Disease (FOAD) or 

Fetal Programming and is a widely accepted phenomenon. SGA is defined as infant 

weight less than the 10th percentile for gestational age. Of note, SGA and IUGR are not 

interchangeable terms. Infants can be born SGA simply due to genetics without having 

been growth-restricted in utero, and therefore, are not classified with the IUGR SGA 

infants discussed in this study. IUGR can be defined as the failure of a fetus to achieve its 

genetically determined growth potential (1). Low birth weight (LBW) is defined as 

infants weighing less than 2500 grams (5 lbs 8 oz) regardless of gestational age. LBW 

infants are usually either preterm or intrauterine growth restricted. Thirty-three percent of 

LBW infants are SGA. 

Intrauterine growth restriction occurs in up to 10% of all pregnancies. The 

perinatal mortality risk of a growth-restricted fetus is up to ten times higher than a 

healthy fetus. IUGR is the second leading cause of perinatal death after preterm delivery 

(2). Twenty percent of stillborn fetuses are growth-restricted (3). 

FOAD was first described in 1969 in an English study looking at a population 

born in the early 1900s (4). This study showed a negative correlation between death from 

cardiovascular disease and weight, head circumference, and ponderal index 

(weight/length3) at birth. Another study a few years later showed that death rates were 

three times higher in those weighing ≤18 lbs at age 1 year compared to those weighing 

≥27 lbs (4). This idea piqued the interest of many, and today there is an abundance of 
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active research in this area (5-13). To prevent cardiovascular disease caused by IUGR, by 

early diagnosis and intervention of IUGR, would be a great feat. In order to bring 

scientists closer to accomplishing this, a thorough understanding of IUGR is necessary. A 

vast amount of research has shown insulin-like growth factor (IGF) to play an essential 

role in fetal development and has been implicated as a prime target for understanding the 

causes of IUGR. 

Just one of countless causes for IUGR is maternal cigarette smoking during 

pregnancy (14-23). Cigarettes contain many chemical substances that are proven to be 

mutagenic and many are found to be carcinogenic. Many of the carcinogens make up a 

group of compounds called polycyclic aromatic hydrocarbons (PAHs). Of this group, 

benzo-alpha-pyrene (BαP) is the most widely studied and is an extremely potent 

carcinogen (24). 

This study attempts to look at the effects of BαP on the insulin-like growth factor-

I (IGF-I) gene. We also perform cytogenetic analysis and determine the mitotic index on 

human placental cells exposed to BαP. 
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Intrauterine growth restriction 

 Many factors exist that contribute to IUGR. Among those factors are acquired 

illnesses, such as intrauterine infection, and inherited diseases, like sickle cell anemia (3). 

Among maternal medical conditions, hypertension, whatever the cause, is most strongly 

associated with IUGR (25). Placental insufficiency is an important cause, and this can be 

due to either maternal or fetal factors (26). Table 1 gives a thorough overview of the 

causes of IUGR. It is estimated that in the U.S. chromosomal aberrations account for ten 

percent of IUGR cases; and as much as forty percent of IUGR cases may be attributed to 

environmental factors, such as cigarette smoking or alcohol abuse during pregnancy (3).  
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Table 1. Causes of intrauterine growth restriction (IUGR). IUGR is when a fetus is small for 
gestational age, below the 10th percentile for weight, and has not met its genetic potential for growth. 
It is when the fetus is growth restricted due to pathology. IUGR is a serious problem, increasing the 
risk of perinatal morbidity and mortality. The causes are often multifactorial and the etiology is 
often unknown. Among maternal factors, hypertension is the most common cause of IUGR. 

Causes of IUGR: 
 Maternal Demographics 

• Age (<16, >35) 
• Ethnicity (e.g., African-American) 
• Low socioeconomic status 
• Single 
• Low level of education 

 
 Maternal Health 

• Hypertension 
• Pregnancy-induced hypertension 
• Infection (TORCHES) 
• Anemia 
• Asthma 
• Chronic Renal Insufficiency 
• Heart Disease 
• Substance Abuse 

o Cigarette Smoking 
o Alcohol use 
o Narcotic use 

• Under nutrition and Malnutrition (during pregnancy) 
 

 Placental 
• Hemangioma 
• Placental infarct 
• Single umbilical artery 
• Small placental size 

 
 Fetal 

• Multiple gestation 
• Chromosomal anomaly 

o Trisomy (21, 18, 13) 
o Turner Syndrome 
o X Polysomy 
o Dwarfism 
o Chondrodystrophies 
o Osteogenesis Imperfecta 
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When a specific illness can be identified, there is no wondering about the cause of 

IUGR. However, there are instances when fetal growth is insufficient for reasons 

unknown. Not knowing the cause and how this could have been prevented can be 

stressful for the clinician and the patient. 

 The largest concern with a LBW infant is perinatal morbidity and mortality. 

Neonatal death is 40 times more likely in LBW infants and 200 times more likely in very 

low birth weight (VLBW) infants, VLBW being defined as less than 1500 grams (27). 

All LBW infants will spend time in the Neonatal Intensive Care Unit, spending health 

care dollars even when intervention and/or treatment are not necessary. A fetus that has 

been growth restricted is at increased risk for premature birth; is less capable of handling 

the distress of labor and delivery as compared to a normal fetus, increasing the chances of 

perinatal morbidity and mortality (28); is at greater risk of hypoxia and hypoglycemia 

pre- and perinatally; is at risk for developing systemic iron deficiency later in infancy and 

childhood (29); and the growth-restricted fetus may not grow appropriately during 

infancy, potentially never achieving catch-up growth. It is known that children with LBW 

have a higher risk of childhood behavioral problems (30).   

 The growth-restricted fetus is also at increased risk for neurodevelopmental 

delays. For example, thyroid hormone is essential for fetal development of the central 

nervous system (CNS). The growth-restricted fetus is at increased risk of having 

hypothyroxinemia (31), but also infants born to mothers with hypothyroxinemia are at 

increased risk of being growth restricted (32). 

 A large population-based study concluded that impaired neurodevelopment during 

fetal life due to LBW may increase susceptibility to depression later in life (30). In this 
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study, women who had weighed ≤3 kg at birth had an increased risk of being depressed at 

age 26 (P<0.001). There was no significant risk increase for men. However, men who 

had weighed ≤2.5 kg at birth were more likely to report a history of depression at age 26 

and to be psychologically distressed at age 16. Mittendorfer-Rutz, et al. found LBW, 

adjusted for gestational age, to be a significant predictor of suicide (33). 

 Two forms of growth restriction have been described—symmetric and 

asymmetric.  Symmetric growth restriction usually occurs early in gestation and the 

brain, or head circumference, and the abdomen and soft tissues are equally growth 

restricted.  In asymmetric growth restriction, the brain is able to grow to its appropriate 

size, while the abdomen and soft tissues are growth restricted.  This type of growth 

restriction usually occurs later in gestation.  Asymmetrically growth-restricted fetuses 

usually have a better outcome than symmetrically growth-restricted fetuses in terms of 

fetal distress and catch-up growth. 

 

 Epidemiology of IUGR  

 The prevalence of LBW deliveries was more than twice as high among black 

women (13.3%) as it was among white women (5.7%) in 1990, and has remained 

relatively consistent. The gap is even wider when VLBW infants are considered. This 

difference exists even when socioeconomic factors such as income, education, and 

harmful habits are controlled. LBW rates among Mexican-American, Asians, and Native 

Americans are not much higher than rates among non-Hispanic whites. The majority of 

LBW infants are due to IUGR in developing countries, and to pre-term delivery in 



www.manaraa.com

12  

developed countries (34). As mentioned above, in the U.S., forty percent of IUGR may 

be due to environmental factors, most of which may be preventable. 

  

 Pathophysiology of IUGR 

 The mechanisms by which IUGR occurs are not well known. Fetal hypoxia is a 

major contributor to IUGR.  In utero oxygen insufficiency can be caused by many things 

such as: maternal illness, like anemia or congenital heart defects; improper placental 

implantation, possibly leading to preeclampsia; insufficient umbilical blood flow due to 

abnormal umbilical vessels; or fetal anemia from Rh isoimmunization. Chronic fetal 

exposure to hypoxia, rather than acute hypoxic exposure, is implicated in IUGR (35).  It 

has been shown that growth factors are consistently down regulated in response to 

hypoxia, leading to growth restriction (35). It has been shown that fetal exposure to 

elevated levels of testosterone in both male and female sheep, rats, and subhuman 

primates leads to growth restriction and elevated levels of IGFBP-1 and -2 (36). 

 

Smoking and IUGR 

 It is well known that certain health-compromising behaviors during pregnancy, 

such as maternal cigarette smoking, alcohol use, and drug abuse, are associated with SGA 

infants (21).  Also, as the number of health-compromising behaviors increases in an 

individual, the risk of having a term-low birth weight (term-LBW) infant increases (21).  

Among cigarette smoking, alcohol use, and drug use, cigarette smoking is the biggest 

predictor of term-LBW (21). It is important to note that women who engage in the 

aforementioned health-compromising behaviors are more likely to have other risk factors 
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for having an SGA infant, such as low socioeconomic status, undernourishment, and/or 

lack of prenatal care. 

 In addition to increasing the risk of IUGR, smoking or secondary smoke exposure 

during pregnancy increases the likelihood of infertility, spontaneous abortion, perinatal 

death, preterm labor, placental abruption, sudden infant death syndrome (SIDS), preterm 

premature rupture of membranes, placenta previa, and ectopic pregnancy (37, 38). It is 

important to note that ectopic pregnancy is the leading cause of maternal death during the 

first trimester (39). The national cost for pregnancy-related complications due to smoking 

is $350 million (40). 

It is estimated that 19% of all women smoke cigarettes (41). Twenty-five percent 

of women of reproductive age smoke cigarettes. Twelve percent of all pregnant women 

are current cigarette smokers. Smoking may decrease infant birth weight by as much as 

250 grams. Smokers are three times more likely to have a growth-restricted fetus than are 

non-smokers (3). Figure 1 shows the prevalence of LBW and VLBW infants among 

smokers versus non-smokers.  
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Figure 1. Prevalence of low birth weight (LBW) and very low birth weight (VLBW) among smokers 
versus non-smokers. LBW is defined as 1500-2499 grams; VLBW  <1500 grams. 39 (40). 
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The mechanisms by which smoking leads to IUGR is not completely understood, 

however, several mechanisms have been proposed: inadequate oxygen delivery to the 

fetus via insufficient placental gas exchange, chromosomal abnormalities, direct toxic 

effects of nicotine, and direct toxicity of the more than 4,000 chemicals found in 

cigarettes (3, 42). Certain maternal genotypes may increase the risk of having a LBW 

infant in cigarette smokers (43). 

 

 Ethnic Breakdown of Women who Smoke during Pregnancy 

 Smoking in women is highest among American Indian and Alaska Native, 

intermediate among white and black women, and lowest among Asian or Pacific Islander 

and Hispanic women. Smoking is 3 times more prevalent in women with 9 to 11 years of 
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education compared to women with 16 or more years of education (44). As reported in 

the 2004 National Health Interview Survey, 21% of white women are current smokers, 

compared with 17% of black women and 11% of Hispanic women (41). See Figure 2 for 

an overview of smoking in women by race. 

 
 
Figure 2. Prevalence of smoking among women in the U.S. by ethnicity (44). 
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 The prevalence of smoking among pregnant women is 20.6% in American 

Indians/Alaska Natives, 15.9% in whites, 9.4% in blacks, 3.7% in Hispanics, and 2.7% in 

Asian/Pacific Islanders (see Figure 3). The younger the pregnant woman, the more likely 

she is to smoke during pregnancy (18% among pregnant woman younger than 20 versus 

9.8% among pregnant women 35 years or older). 

 

Figure 3. Prevalence of smoking among pregnant women in the U.S. by ethnicity. In general, about 
one-fourth of the U.S. population smoke cigarettes. This serious problem is compounded when a 
pregnant woman smokes. Smoking has deleterious effects on the fetus—spontaneous abortion, 
preterm labor, intrauterine growth restriction, and placental abruption are only a few of the many 
examples of problems that can occur when a developing fetus is exposed to the harmful toxins of 
cigarette smoke. This chart shows the ethnic breakdown of smoking among expecting mothers in the 
U.S. AI/AN=American Indian/Alaska Native; W=white; B=Black; H=Hispanic; A/PI=Asian/Pacific 
Islander (40). 
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 Benzo-alpha-pyrene 

 BαP is a polycyclic aromatic hydrocarbon (PAH) and is a well-documented, well-

researched mutagen that is present in cigarette smoke (45-48). It was first isolated from 

coal tar in 1930, and its carcinogenicity was discovered by repeated painting of the 

substance onto mouse skin (49). Aside from being found in smoking tobacco, it is also 

found where combustion reactions take place (it is a byproduct of incomplete 

combustion). These include industrial processes, transportation, energy production and 

use, food preparation, and open trash burning. It is also found in materials like tar and 

asphalt. Natural sources include forest fires and grass fires (50). BαP has been implicated 

in many cancers, particularly lung cancer (51). 

 Cigarettes contain many different carcinogens--PAHs, N-nitrosamines, inorganic 

compounds, aza-arenes, aromatic amines, aldehydes, heterocyclic aromatic amines, and 

other organic compounds (46). BαP is the most studied of all cigarette mutagens and is 

highly potent. Like other cigarette carcinogens, BαP requires metabolic activation prior to 

causing any damage. The BαP metabolite, (±)B[a]P-r7,t-8-dihydrodiol-t-9,10-epoxide 

(BPDE), is highly carcinogenic (52). Upon formation of BPDE, adducts are formed by 

the covalent binding of BPDE to macromolecules such as DNA, RNA, and protein (53). 

The majority of DNA adducts in healthy individuals are repaired. However, with chronic 

exposure, as in an individual who smokes, DNA adducts may persist, greatly increasing 

the risk of mutation and tumorogenesis (46). 
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Insulin-like Growth Factor 

IGF Family 

The IGF family consists of insulin, IGF-I, and IGF-II. All are similar in structure 

and important in cell proliferation and somatic growth.  IGF-binding proteins (IGFBPs) 

are important in regulating the activity of IGF-I and –II. IGF-I and –II act mainly through 

the IGF-I receptor (IGF-IR).  In binding IGF, IGFBPs modulate the interaction of IGF 

with its receptor. The binding proteins can inhibit this interaction, or they can act by 

slowly releasing the IGF, prolonging the interaction with the receptor, and enhancing the 

response (54). Giudice et al found elevated levels of fetal cord serum IGFBP-1 and -2 in 

IUGR fetuses, suggesting that these binding proteins decrease IGF-I transportation to 

fetal tissues, inhibiting fetal growth (55). 

IGFBP-1 has been strongly implicated in IUGR. Studying zebrafish, Kajimura et 

al found that over expression of IGFBP-1 even under normoxic conditions resulted in 

growth reduction. Also, knockout IGFBP-1 embryos exposed to hypoxic conditions had a 

significant reduction in growth restriction. Furthermore, growth and development were 

unaffected in IGFBP-1 knockout embryos under normoxic conditions. It has been 

described that other stressful conditions besides hypoxia lead to an increase in IGFBP-1, 

such as malnourishment, stress, and chronic disease (56). 

 

IGF-I Genomics 

The IGF-I gene is located on chromosome 12 and has 6 exons. Two promoter 

regions have been identified. IGF-IA and IGF-IB are two cDNAs of IGF-I, produced by 
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alternative RNA splicing (56). We have utilized computational genomics and proteomics 

to further understand the stature of the IGF-I gene/protein (see Figure 4). 

 
Figure 4. A screen snapshot for the IGF-I protein in three dimension view (3-D) visualized using KiG 
Java software obtained from the PDB (57). The protein is Solution structure of hIGF-I, a nuclear 
magnetic resonance and restrained molecular dynamics study (58). 

 

 

 As described by Brzozowski et al IGF-I has an extension at the C-terminus 

known as the D-domain (57). The helical core of the IGF-I protein, consisting of three 

helices, is similar to its equivalent in insulin (57). However, there is an IGF-I-specific C-

loop that extends ~20 Å away from the core. There is also the presence of a peptide-bond 

cleavage between Ser35 and Arg36 resulting in an apparent gap between residues 35 and 

39 (57). These structural specificities set IGF-I apart from insulin, despite having high 

sequence similarity. 

Several studies have shown that a defect in the IGF-I gene results in severe 

growth restriction overall and in numerous organ systems. This occurs even in the 
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presence of increased GH levels. For example, IGF-I gene or IGF-I receptor gene 

knockout mice resulted in a 40-45% reduction in the size of the mice (59). To show that 

IGF-I plays a role in growth, Laron’s group, along with four other groups, administered 

biosynthetic IGF-I long-term to children with primary IGF-I deficiency (Laron 

Syndrome). This resulted in an increase in yearly mean growth velocity. Exogenous GH 

was also administered to patients with isolated growth hormone deficiency (IGHD), also 

showing an increase in growth velocity. This shows that both IGF-I and GH promote 

linear growth (59). 

IGF-IR mutations have also been described in persons with unexplained 

intrauterine growth restriction and severe short stature. Abuzzahab et al showed two 

single-base-pair substitutions in exon 2 of the IGF-IR gene in a 14-year-old who had poor 

fetal and postnatal growth, persistent short stature, and an abnormal psychiatric 

evaluation (nonverbal learning disorder, obsessive tendencies, excessive fantasy role 

playing, and social phobias). Fibroblasts from this patient showed reduced binding of 

IGF-I to the IGF-IR and the IGF-IR phosphorylation studies were abnormal. This study 

also describes a boy with severe short stature and various dysmorphic features who was 

found to be heterozygous for a point mutation in exon 2 of the IGF-IR gene. In 

fibroblasts from this patient, the number of IGF-IRs was lower than in control subjects 

(60). 
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IGF-I Physiology 

IGF-I, also known as somatomedin C, is essential for mammalian growth and 

development. It is a 70-amino acid polypeptide containing three α-helices. It is produced 

mainly by the liver (this production is stimulated by growth hormone), through which it 

exerts its endocrine effects. IGF-I is produced by other nonhepatic tissues as well, having 

autocrine and paracrine functions. Yakar et al found that mice with a liver IGF-I gene 

deletion had an 80% reduction in circulating IGF-I. This suggests that the majority of 

circulating IGF-I is produced in the liver under the regulation of growth hormone (GH). 

The study, however, showed that postnatal and peripubertal growth were normal despite 

this vast reduction in liver IGF-I (61). GH induces the production of IGF-I, but it is not 

the only regulator. Nutritional status and liver blood insulin levels also induce the 

production of IGF-I. IGF-I expression in the reproductive organs is affected by sex 

steroids, and expression in bone is affected by estrogen and PTH. 

Functions of IGF-I include bone growth and metabolism. One study showed that 

in women, absence of the wild-type (192-bp) allele in the promoter region of the IGF-I 

gene is associated with lower bone mineral density levels and higher rates of bone loss 

(62). The absence of this 192-bp allele is also associated with lower levels of circulating 

IGF-I (63). Another study showed a decrease in the rate of long bone ossification in IGF-

I gene knockout mice (64). The same study also showed both sexes of these mutant mice 

to have a reduction in size of reproductive organs and to be infertile. IGF-I has been 

shown to be important in CNS development. D’Ercole et al showed that transgenic mice 

containing ectopic IGFBP-1 in the brain had retarded brain growth [IGFBP-1 binds IGF-

I, preventing its action (65)]. IGF-I is important for proliferation of the vasculature. Du et 
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al showed that vascular smooth muscle cells transfected with antisense IGF-IR cDNA 

had a decreased number of IGF-IRs and subsequently smooth muscle cell growth was 

inhibited (66). See table 2 for a complete overview of the function of IGF-I. 

 
Table 2. Functions of Insulin-like Growth Factor-I (IGF-I) gene and protein. It is similar in structure 
to proinsulin. IGF-I is a ubiquitous growth factor and plays numerous roles in normal physiology as 
well as in pathology, such as cancer. IGF-I works in conjunction with growth hormone and also 
independently. It is produced mainly by the liver, where it acts in an endocrine fashion. It is also 
produced by other body tissues, where it acts in a paracrine and autocrine manner. 

GROWTH 
 
IUGR 
Stimulates smooth muscle cell migration and proliferation. 
Survival factor for fibroblasts, vascular smooth muscle cells, neurons, 
cardiomyocytes, and tumor cells (suppression of IGF-I signaling induces massive 
apoptosis in vivo and in vitro). 
Acromegaly (through overproduction of GH) 
Osteoblast differentiation (IGF-I regulates Osterix, a vital transcription factor for 
bone growth) 
IGF-I may promote erythropoiesis. 
IGF-I may enhance keratinocyte viability and contribute to a return to epidermal 
homeostasis, following UVB exposure. 
Inhibits apoptosis via PI-3-kinase and Bcl-X pathways. 
IGF-I accelerates regeneration of nerve and skeletal muscle following nerve injury 
(IGF-I causes satellite cell proliferation, marked by increases in cyclin-D1, 
required for G1 phase of cell cycle)  

REPRODUCTION 
 
Elevate LH levels in women with PCOS  causing anovulation. 
Regulate ovarian cells through leptin.  

HEART DISEASE 
 
Increased circulating IGF-I and IGFBP-3 may be stimulators of atherosclerosis. 
IGF-I may play a role in the pathogenesis of Idiopathic Hypertrophic 
Cardiomyopathy (in vitro studies demonstrate an overexpression of IGF-I in 
cardiomyocytes of HCM tissue)  
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CANCER 
 
Increased breast cancer risk in women with promoter polymorphisms in IGF-I and 
IGFBP-3 genes. 
IGF-I promotes prostate carcinogenesis. 
IGF-I inhibits apoptosis and stimulates cell proliferation, promoting tumor 
development. 
IGF-I/IGFBP-3 imbalance may have implications in hepatocarcinogenesis and 
liver tumor development in patients with hepatic cirrhosis. 
Promotes cell division in breast cancer cells. 
Colorectal carcinogenesis.  

CNS 
 
Neuron differentiation. 
Neurotransmitter release. 
Stimulation of dendritic growth.  

ENDOCRINE 
 
Serum glucose regulation via alterations in intestinal glucose transporter gene 
expression.  

 

 

IGF-I and Fetal Development 

During gestation, IGF-I and -II play the major role in fetal growth, and after birth, 

GH, working through the actions of IGF-I, has the major role. Several studies reviewed in 

Baker et al showed that the embryonic growth effects of IGF-I are GH-independent, since 

mutant animals with no GH or no pituitary gland showed no impairment in prenatal 

growth (64). Several studies have found a positive correlation between serum IGF-I 

levels in the neonate and gestational age at birth (55, 67-69). This suggests that a higher 

amount of IGF-I is needed in a fetus undergoing a more rapid rate of growth during the 

later stages of gestation. In a study to determine the effects of null mutations of IGF-I in 

mice, Baker et al found that after embryonic day 13.5, IGF-I null mice embryos grew at a 
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slower rate and were 60% smaller at the end of gestation than the wild-type controls. The 

IGF-I null mice also grew at a slower rate postnatally, and after 8 weeks of age, were 

30% smaller than the wild-type controls (64). 

IGF-I levels have been shown to be significantly lower in IUGR fetuses compared 

to fetuses with weights above the mean for gestational age (67, 69). However, other 

studies have found this not to be the case (55). The causes for IGF-I deficiency are not 

known, but several studies have been done reporting the presence of an IGF-I gene 

mutation or polymorphism in persons with IGF-I deficiency, IUGR, or both. Mutations 

have also been described in the IGF-I receptor (IGF-IR) gene. Woods et al reports a 15-

year-old boy with severe intrauterine growth restriction that persisted after birth, 

profound sensorineural deafness, and mental retardation that had IGF-I deficiency and a 

homozygous deletion of exons 4 and 5 of the IGF-I gene (70). Another study reports a 

boy with IGF-I deficiency and pre- and postnatal growth failure who was found to have a 

homozygous T→A transversion in the polyadenylation signal sequence in exon 6 of the 

IGF-I gene, resulting in similar phenotypic characteristics of the aforementioned study 

growth failure, sensorineural deafness, and delayed psychomotor development (71). 

Other factors that influence fetal growth and lead to growth restriction include, 

but are not limited to, maternal malnutrition, substance abuse, anemia, prescription drug 

use, infection, and young age (3, 72), as well as a reduction in uteroplacental circulation. 

It is unclear if all causes of IUGR are related to alterations in IGF-I, or members of the 

IGF family. However, malnutrition, leading to hypoglycemia, causes up- and down 

regulation of insulin, IGF-I, and IGF-II (72). Many other growth factors exist that have 
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been implicated in IUGR, such as leptin, neuropeptide Y, and vasoactive intestinal 

peptide (72). 
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Fetal Origin of Adult Disease 

Environmental insults, such as malnourishment and decreased oxygen supply, 

may cause the fetus to undergo some type of adaptation in order to protect vital organ 

systems, like the CNS. When nutrients are sparse, the fetus directs blood flow to the 

brain, preserving normal brain development, while causing other vital organs to be 

growth restricted. This adaptation early in fetal development may result in permanent 

alterations in anatomical structure, such as decreased cell number, that cause the fetus to 

be born SGA and puts the infant at high risk for disease later on in life. For example, one 

study showed that mice exposed to a low protein diet prenatally had smaller hearts and 

fewer cardiomyocytes than mice exposed to a normal protein diet prenatally (73). Some 

environmental insults, such as cigarette smoke, may cause mutations in the IGF-I gene, 

resulting in decreased levels of circulating IGF-I, and producing an SGA infant. One 

study has shown that there is an increase in the number of DNA adducts in the term 

placentas of smokers (74). DNA adducts are insults to the DNA and are considered to be 

the first step in causing a genetic mutation. 

Acquired single nucleotide polymorphisms (SNPs) are alterations in the sequence 

of the genetic material of an individual. To be considered a SNP, the single nucleotide 

(A, C, T, or G) alteration must occur in at least 1% of the population (75). Research has 

shown that SNPs can cause a change in cell function, can increase or decrease an 

individual’s risk of acquiring certain diseases, and may even alter the response an 

individual has to a drug (75). SNPs may occur due to an environmental insult. Acquired 

SNPs can cause permanent alterations in the DNA sequence and can be passed on to 

offspring. 
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A study looking at a polymorphism in the promoter region of the IGF-I gene 

found that individuals who were noncarriers of the 192-bp allele, compared to 

homozygous and heterozygous carriers, had significantly lower circulating IGF-I levels. 

To show that low levels of IGF-I are associated with CV and cerebrovascular disease, 

two early markers of atherosclerosis were assessed: carotid intima-media thickness and 

aortic pulse wave velocity (76). Both of these parameters were significantly increased in 

hypertensive noncarriers compared with hypertensive carriers. This study suggested a 

hypothesis as to why this difference was observed only in hypertensive subjects: those 

with a higher hemodynamic load needed more vascular protection, which is provided by 

the effects of IGF-I. Noncarriers of the 192-bp allele were unable to produce sufficient 

amounts of IGF-I that would protect the vasculature from damage caused by 

hypertension. 

Some of the adult diseases that have been described to be associated with low 

birth weight are Syndrome X (central obesity, hypertension, dyslipidemia, impaired 

glucose tolerance), type II diabetes mellitus, and atherosclerosis (77-81). Animal studies 

show that even brief exposure to malnourishment in utero leads to permanent changes in 

blood pressure (BP), cholesterol metabolism, and insulin responses to glucose (82). 

IUGR individuals have defects in the action of insulin and its secretion, as well as fewer 

pancreatic ß-cells (83). It has even been speculated that IUGR may predispose an 

individual to a sedentary lifestyle, which in turn would increase the risks of developing 

cardiovascular (CV) disease (84). Interestingly, those at highest risk for CV disease as 

adults are those who were small at birth and obese as adults. One study found the inverse 

relationship between birth weight and adult blood pressure had more to do with thinness 
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at birth rather than birth weight alone (85). This same study found that among the 

heaviest boys, those who were thin at birth had a predicted probability of high BP almost 

twice that of those who were relatively heavy at birth. 

The devastation of heart disease is well known. The cost of CV disease in the 

United States is projected to be $394 billion in 2005, including both health care 

expenditures and lost productivity from death and disability (86). Globally, the number of 

deaths due to CV disease exceeds 12 million annually. It is important to fully understand 

the pathophysiology of IUGR in order to obtain early detection and intervention methods, 

theoretically decreasing the incidence of CV disease. 

A large, systematic review found an inverse relationship between birth weight and 

systolic blood pressure (SBP) in adulthood. On average, a 1-kg decrease in birth weight 

corresponded with a 2 to 4 mmHg increase in SBP. The review also found a positive 

correlation between postnatal catch-up growth of SGA infants and adult SBP (87). 

Another proposed cause of adult heart disease in terms of fetal growth restriction 

is congenital oligonephropathy. The premise of this theory is that IUGR causes impaired 

renal growth, resulting in fewer nephrons and a decrease in glomerular filtration surface 

area. This may result in systemic and glomerular hypertension as an adult. Silver et al 

found that the renal volume in growth-restricted fetuses was significantly smaller than in 

healthy fetuses (2). 

Some studies are beginning to propose prophylactic treatment options for IUGR 

infants. IUGR rats are shown to have features of human type 2 diabetes—β-cell secretory 

defects, insulin resistance, and a reduction in β-cell mass. IUGR rats treated short-term in 

the neonatal period with exendin-4 (Ex-4), a glucagon-like peptide-1 analog that 
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promotes β-cell proliferation, had improved glucose tolerance. These rats eventually 

became normoglycemic, and later had no signs of diabetes. The effects of Ex-4 on 

glucose homeostasis in these rats were permanent (83). 

A study by Vickers et al showed that treatment with GH in intrauterine growth- 

restricted rats improved systolic blood pressure and overall fat mass (88). N-3 fatty acid 

intake through the consumption of dietary fish may be associated with an increase in birth 

weight and a decrease in the risk of IUGR and preterm labor. An English study looked at 

the correlation between n-3 fatty acids and gestation duration and birth weight. In the 

univariate analysis of this study, fish consumption was positively associated with birth 

weight, and negatively associated with the frequency of IUGR (89). 
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Hypothesis 

 The purpose of this study was to look at the genotoxic and cytotoxic effects of benzo-α-

pyrene (BαP), a chemical mutagen that is present in cigarette smoke, on the insulin-like growth 

factor-I (IGF-I) gene. 
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Materials and Methods 
 

Cell Culture 

 Cells from an HTR V8 EVCT cell-line of human placental cells were cultured 

in culture flasks (Falcon™, 75cm2 canted neck, vented cap). Cells were allowed to grow 

in bovine serum for 72 hours. Cells were grown to subconfluence. After this time the 

cells were starved for 48 hours. Then cells were either treated or untreated. The untreated 

flask was the control. Cells were treated at two doses: dose 1 = 1μM BαP and dose 2 = 

5μM BαP. BαP has been reported to induce DNA adducts at a concentration of 2.5 μM 

(90). In the mouse hepatoma cell line TAOc1B(a)Prc1, only 40 nM of BαP was required 

to induce a 2-fold increase in sister chromatid exchange (SCE) frequency (91). Screening 

cell cultures for SCE's is a frequent method of testing chemicals for potential DNA 

damaging (and thus probably mutagenic) effects (92). Cells incubated for 72 hours, after 

which time the treatment was removed and flasks were immediately frozen at -20 C until 

use. 

 

Chromosomal Preparation and Light Microscopy Analysis 

 Cells from the HTR human placental cell line were prepared for chromosomal 

analysis. The cells were cultured and allowed to enter metaphase. The mitotic inhibitor 

Colcemid was added to arrest cells at metaphase. Chromosomes were then extracted by 

exposing cells to a hypotonic solution followed by a series of fixative solutions. The cells 

then expanded and the chromosomes were allowed to spread out. For staining, the slides 

were placed in Giemsa stain solution (1mL Giemsa stain to 50mL H20) for 40 minutes. 

The slides were then rinsed with distilled water and allowed to air-dry. Cells from the 
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control and dose 1 were prepared and analyzed. 

For the analysis of chromosomal aberrations, the entire area of each slide was 

viewed under a light microscope (Carl Zeiss, Inc., Thornwood, NY) and all chromosomes 

were analyzed. Chromosomes were visualized at 1000x. Chromosomes were considered 

abnormal if there were numerical aberrations (aneuploidy) or structural aberrations 

(condensed, contracted, clumped, sticky, or ringed). Photographs of selected 

chromosomes from each group (control or treated) were taken. 

 Mitotic index (MI) is the fraction of cells in a microscope field that contain 

condensed chromosomes. MI is a method of quantifying cellular proliferation. For 

mitotic index analysis, the slides were viewed under light microscopy. Ten random fields 

were viewed and the number of metaphasic cells per 100 cells were counted for each 

field. A student t-test was performed in order to determine the significance. 

 

RNA Extraction and Gel Electrophoresis 

 The TRIzol® Reagent Method was used (see protocol sheet from Invitrogen Life 

Technologies™, form no. 18057N). Cells were grown to subconfluence in culture flasks 

(Falcon™, 75cm2 canted neck, vented cap). Homogenization: The cells (control, dose 1, 

and dose 2) were lysed directly in the culture dish by adding 1mL TRIzol® Reagent per 

10cm2 area of culture dish, passing the cell lysate several times through a pipette in order 

to disrupt the cell membrane and homogenize the solution. The samples were transferred 

to Eppendorf (E) tubes. Phase Separation: The homogenized samples were incubated for 

5 minutes at 15 to 30° C. to permit the complete dissociation of nucleoprotein complexes. 

0.2mL of chloroform per 1mL of TRIzol® Reagent was added. Each sample tube was 
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shaken vigorously by hand for 15 seconds and incubated at 15 to 30° C. for 2 to 3 

minutes. The samples were centrifuged at 12,000 x g at 4° C. for 15 minutes. Following 

centrifugation, the mixture separates into a lower red, phenol-chloroform phase, an 

interphase, and a colorless upper aqueous phase. RNA remains exclusively in the aqueous 

phase. The volume of the aqueous phase is about 60% of the volume of TRIzol® Reagent 

used for homogenization. RNA Precipitation: The colorless upper aqueous phase was 

transferred to a new E tube and the organic phase was saved for subsequent DNA 

isolation. The RNA was precipitated from the aqueous phase by mixing with isopropyl 

alcohol. 0.5mL of isopropyl alcohol per 1mL of TRIzol® Reagent was used. Samples 

were incubated at 15 to 30° C. for 10 minutes and centrifuged at 12,000 x g at 4° C. for 

10 minutes. The RNA precipitate formed a visible gel-like pellet on the side and bottom 

of the tube. RNA Wash: The supernatant was removed and the RNA pellet was washed 

once with 75% ethanol, using 1mL per 1mL TRIzol® Reagent used. Samples were then 

vortexed and centrifuged at 7,500 x g at 4° C. for 5 minutes. Redissolving the RNA: The 

RNA pellet was allowed to dry under a fume hood for 10 minutes. The RNA pellet was 

dissolved in 50µL RNAse-free water and incubated for 10 minutes at 55 to 60° C. The 

RNA solution was frozen at 4º C. until use. 

 For the purpose of confirming the purity of the RNA extracted, agarose gel 

electrophoresis was run. The gel was prepared by adding 0.5gm agarose to 37mL ddH20 

in a 250mL Erlenmeyer flask and microwaving for 1 minute 10 seconds until agarose 

dissolved completely. Care was taken so mixture did not boil over. Mixture was cooled 

for 3 minutes over ice. 5mL of 10x MOPS solution (0.2M MOPS, 50mM sodium acetate, 

5mM EDTA, pH 7.0) and 8.75mL 37% formaldehyde was added; swirled flask to mix. 
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Mixture was poured into gel tray and comb was placed; gel was allowed to cool over ice 

for about 20 minutes. RNA samples were prepared by adding 5µL RNA solution, 10µL 

RNA denaturation buffer (10mL 100% deionized formamide, 3.5mL 37% formaldehyde, 

and 1.5mL 10x MOPS), 1µL ethidium bromide (500µg/mL), and 5µL RNA Loading 

Buffer (Sigma cat. No. R-1386). Prior to placing in gel, RNA samples were incubated in 

65 C. water bath for 10 minutes and placed on ice for 2 minutes. Samples were run in 

buffer solution (40mL 10x MOPS, 360mL ddH20, and 70mL 37% formaldehyde) at 50 

volts for about 2 hours, or until dark blue dye had migrated about 3/4 across length of gel. 

Gel was then viewed under UV light transilluminator and picture taken using a Polaroid 

camera with photographic hood. 

 

DNA Extraction and Gel Electrophoresis 

 During RNA extraction using the TRI Reagent method, the cells from the culture 

flasks were homogenized with TRI Reagent and after several steps as described above for 

RNA extraction, an E tube was spun and the upper aqueous phase containing the RNA 

was extracted. For DNA extraction, the E tubes were centrifuged at 12,000 x g at 4 C. for 

5 minutes. 0.5mL of back extraction buffer (BEB: 4M guanidine thiocyanate, 50mM 

sodium citrate, 1M Tris, water) was added to each E tube. Tubes were mixed intensively 

for 3 minutes and then spun at 10,000 x g at 4 C. for 30 minutes. The upper aqueous 

phase containing the DNA was transferred to new E tubes. 0.4 mL of isopropanol was 

added to each tube. Tubes were allowed to incubate at room temperature for 5 minutes. 

Samples were centrifuged at 10,000 x g at 4 C. for 15 minutes. The supernatant was 

removed and the DNA pellet was washed with 0.5mL of 70% ethanol and spun at 12,000 
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x g at 4 C. for 15 minutes. The ethanol was poured off and the DNA pellet was dissolved 

in TE buffer (0.01 M Tris, pH 7.3, 0.001M Na2EDTA) and stored at 4 C. until use. 

For the purpose of confirming the purity of the DNA extracted, agarose gel 

electrophoresis was run. The gel was prepared by adding 0.5 gram agarose to 50 mL TE 

buffer solution (10mL 1M Tris, pH 8.0, 200µL 0.5M EDTA; added ddH20 to 1000mL) in 

a 250mL Erlenmeyer flask and microwaving for 1 minute until agarose dissolved 

completely. Care was taken so mixture did not boil over. Mixture was cooled for 3 

minutes over ice. 1µL ethidium bromide (500µg/mL) was added; swirled flask to mix. 

Mixture was poured into gel tray and comb was placed; gel was allowed to cool over ice 

for about 20 minutes. DNA samples were prepared by adding 50µL DNA solution and 

10µL loading buffer (25mg bromophenol blue, 4g sucrose, and H20 to 10mL). Samples 

were run in TE buffer at 50 volts for about 1 hour, or until dye had migrated about 3/4 

across length of gel. Gel was then viewed under UV light transilluminator and picture 

taken using a Polaroid camera with photographic hood. 

 

cDNA Synthesis 

 (Sigma Enhanced Avian RT First Strand Synthesis Kit, Product no. STR-1). The 

following was added to a PCR tube: 5µg RNA template (extracted from human placental 

cell line, see above RNA Extraction and Gel Electrophoresis), 1µL deoxynucleotide mix, 

1µL 3’ antisense specific primer, ddH20 quantity sufficient to bring total volume to 10µL. 

Samples were gently mixed and briefly centrifuged. Sample tubes were placed in thermal 

cycler at 70° C. for 10 minutes. The tubes were then placed on ice, centrifuged, and the 

following components added: 2µL 10x buffer for eAMV-RT, 1µL enhanced avian RT, 
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1µL RNase inhibitor, and 6µL ddH2O. The reaction tubes were incubated at 25° C. for 15 

minutes. The tubes were placed in thermal cycler at 50° C. for 50 minutes. The samples 

were then used for PCR (see next section). 

 

PCR of DNA and cDNA and Electrophoresis 

 (SuperArray BioScience Corporation user manual part #1016A version 1.2) The 

following was added to a sterile PCR tube for each sample (control, dose 1, and dose 2): 

12.5µL ReactionReady™ HotStart Sweet PCR master mix (PA-007), 9.5µL ddH20, 1µL 

cDNA template, and 1µL primer. See Table 3 for more information on the primers. The 

samples were placed in the thermal cycler and the program from Table 4 was run. 

 
Table 3. IGF-I primer sequences. 
IGF-I 
Exon 

Strand Primer Sequence 

Forward GCTAAATCTCACTGTCACTGCTAAATT 1 
Reverse GAATTCCCCAATGACAACAAAGAG 
Forward CCTGATTAATGACAGTCGTGG 2 
Reverse CCAGATACGGGCACTCATTC 
Forward GCACCCTAACATGAGGCGACTCTG 3 
Reverse GGATCCCACCCAGGTGGGCTTAC 
Forward GCTCATTCAAAGGGACAACATGGG 4 
Reverse TGCTCCTCTCTCATCATCCTTGCC 

 
Table 4. Thermal cycler program for PCR. 

Cycles Duration Temperature 

1 15 minutes 95º C 

15 seconds 95º C 

30 seconds 55º C 

35 

30 seconds 72º C 
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 An agarose gel was prepared by adding 1 gram agarose to 50mL TAE (40mM 

Tris-acetate, 2mM EDTA, pH 8.0) in a 250mL Erlenmeyer flask and microwaving for 1 

minute 10 seconds until agarose dissolved completely. Care was taken so mixture did not 

boil over. Mixture was cooled for 3 minutes over ice. 20µL ethidium bromide was added; 

swirled flask to mix. Mixture was poured into gel tray and comb was placed; gel was 

allowed to cool over ice for about 20 minutes. Samples were run in TAE buffer at 90 

volts for about 1 hour, or until dye had migrated about 2/3 across length of gel. Gel was 

then viewed under UV light transilluminator and picture taken using a Polaroid camera 

with photographic hood. The gel photo was converted to digital form using a standard 

scanner and the gel photo was analyzed using the software NIH Image, Scion Image for 

Windows. 

I conducted all laboratory procedures described above except chromosomal 

preparation of the HTR placental cells. This procedure was performed by the research 

supervisor, Dr. Ahmed Fadiel. 
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Results

The cytogenetic analysis was done using the Giemsa stain method under light 

microscopy. This analysis showed marked differences between the chromosomes from 

the control cells and the chromosomes from the BαP-treated cells. Furthermore, the 

chromosomal aberrations differed amongst the two different doses of BαP. Chromosomes 

from the control group are shown in Figures 5-7. Chromosomes in Figure 5 are euploidic, 

all sister chromatids have normal centromeres, and the chromatid length is within normal 

limits. Figures 6 and 7 show chromosomes that are euploidic and structurally normal. 

Dose 1 showed chromosomal clumping, as reported in Trier et al (93) and Grant 

(94) and also contraction, stickiness, and fragmentation (94). Chromosomes treated with 

dose 1 are shown in Figures 8-11. Figure 8 reveals hypoploidy and chromosomal 

contraction. Figure 9 shows hypoploidy and chromosomal contraction and clumping. 

Figure 10 shows sticky and clumped chromosomes. Figure 11 demonstrates hypoploidy, 

chromosomal contraction, and also a ringed chromosome. 

Dose 2 showed polyploidy with clumping and stickiness (Figures 12 and 13). 

Figure 12 shows polyploidy. In addition to polyploidy, Figure 13 also reveals clumped 

and sticky chromosomes.  
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Figure 5. Control group (no treatment). Normal chromosomes. Chromosomes prepared from human 
placental cell line; Giemsa stain. Viewed under light microscopy (1000x) and photographed with 
digital camera. The number of chromosomes is 46 (human diploid). All sister chromatids have 
normal centromeres and the chromatid length is within normal limits. 

 
 

   
 

Figure 6. Control group (no treatment). Normal chromosomes. Chromosomes prepared from human 
placental cell line; Giemsa stain. Viewed under light microscopy (1000x) and photographed with 
digital camera. The centromeres appear intact and the chromatid length appears to be within normal 
limits. 
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Figure 7. Control group (no treatment). Normal chromosomes. Chromosomes prepared from human 
placental cell line; Giemsa stain. Viewed under light microscopy (1000x) and photographed with 
digital camera. The number of chromosomes is 46 (human diploid). 

 
 
 
 
 
Figure 8. Treated group, dose 1 (cells treated with 1μM B(α)P). Chromosomes prepared from B(α)P-
treated human placental cell line; Giemsa stain. Viewed under light microscopy (1000x) and 
photographed with digital camera. Aberrant chromosomes are hypoploidic and appear condensed 
and contracted. 

 
 



www.manaraa.com

41  

Figure 9. Treated group, dose 1 (cells treated with 1μM B(α)P). Chromosomes prepared from B(α)P-
treated human placental cell line; Giemsa stain. Viewed under light microscopy (1000x) and 
photographed with digital camera. Aberrant chromosomes are hypoploidic and appear contracted 
and clumped. 

 
 
 
 
 
      . 
Figure 10. Treated group, dose 1 (cells treated with 1μM B(α)P). Chromosomes prepared from 
B(α)P-treated human placental cell line; Giemsa stain. Viewed under light microscopy (1000x) and 
photographed with digital camera. Aberrant chromosomes appear sticky and clumped. 
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Figure 11. Treated group, dose 1 (cells treated with 1μM B(α)P). Chromosomes prepared from 
B(α)P-treated human placental cell line; Giemsa stain. Viewed under light microscopy (1000x) and 
photographed with digital camera. Aberrant chromosomes are hypoploidic and appear condensed 
and contracted. The arrow indicates a ringed chromosome. 

 
 
 
 
Figure 12. Treated group, dose 2 (cells treated with 5μM B(α)P). Chromosomes prepared from 
B(α)P-treated human placental cell line; Giemsa stain. Viewed under light microscopy (1000x) and 
photographed with digital camera. Aberrant chromosomes are polyploidic. 
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Figure 13. Treated group, dose 2 (cells treated with 5μM B(α)P). Chromosomes prepared from 
B(α)P-treated human placental cell line; Giemsa stain. Viewed under light microscopy (1000x) and 
photographed with digital camera. Aberrant chromosomes are polyploidic and appear clumped and 
sticky. 

 
 
 



www.manaraa.com

44  

The mitotic index analysis showed that mitosis was significantly reduced in the 

sample treated with BαP (figure 14). A student t-test gave a P value of 0.0447, 95% 

confidence interval (0.024-1.236). 

 

Figure 14. Mitotic indices for control group versus dose 1 of the BαP-treated group. Mitotic index 
(MI) is the fraction of cells in a microscope field which contain condensed chromosomes. MI is a 
method of quantifying cellular proliferation. For mitotic index analysis in this study, slides 
containing prepared chromosomes from a human placental cell line were viewed under light 
microscopy (Carl Zeiss, Inc., Thornwood, NY). Ten random fields were viewed and the number of 
metaphasic cells per 100 cells were counted for each field. An unpaired student t-test showed a p-
value of 0.0447, 95% confidence interval (0.024-1.236). 
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Figure 15 shows the gel electrophoresis of RNA extracted from HTR human 

placental cell line. Figure 16 shows the gel electrophoresis of DNA extracted from Trizol. 

Traditional PCR of DNA shown in figure 17 displays the amplification of IGF-I exons 1-

4. The lane labeled L is the ladder (PCR 100bp Low Ladder, Sigma P1473). The IGF-I 

exons are between 200 and 400 base pairs. The sequence of each exon is given in Table 

3. It is important to note that the IGF-I gene consists of 6 exons, however, this study was 

performed in a laboratory that only had access to exons 1-4. 

 
Figure 15. Gel electrophoresis of RNA extracted from human placental cell line. 
 
      D2       D1      C 

 

D2 Dose 2: 5µM BαP 
D1 Dose 1: 1µM BαP 
C Control: untreated 

 
 
 
Figure 16. Gel electrophoresis of DNA extracted from human placental cell line. 
 
      C          D1        D2 
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Figure 17. Gel electrophoresis of DNA polymerized chain reaction (PCR) products of insulin-like 
growth factor-I (IGF-I) exons 1-4. 
     
   Control    Dose 2 

L = Ladder (100 bp) 
1 = IGF-I exon 1 
2 = IGF-I exon 2 
3 = IGF-I exon 3 
4 = IGF-I exon 4  

    L   1  2   3  4     1  2  3  4 
 
 
 
 

Traditional PCR of cDNA synthesized from RNA (as shown in Figure 15) is 

shown in Figure 18. Samples from all groups (control, dose 1, and dose 2) were run and 

IGF-I primers 1-4 were amplified from all groups. Samples were run containing the 

primer of human glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an internal 

normalizer. For optimal viewing of the IGF-I exon PCR bands, the samples were run 

again without the GAPDH, as shown in Figure 18. The amplification bands were 

analyzed using the NIH Image, Scion Image for Windows software and the results are 

shown in Figure 19. The area under each curve represents the relative brightness of each 

band as compared to the internal normalizer, GAPDH. The brightness of the bands from 

the treated groups is diminished compared to the control group. Of note, this traditional 

method of PCR is only semi-quantative and real-time PCR is needed for complete 

quantitative analysis. 
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Figure 18. Gel electrophoresis of cDNA polymerized chain reaction (PCR) products of insulin-like 
growth factor-I (IGF-I) exons 1-4. The cDNA was synthesized from RNA extracted from human 
placental cells. Each lane number represents the exon number. The first four lanes are from the 
control group (untreated); the second four lanes are from the dose 1 group (treated with 1μM BαP); 
and the third four lanes are from the dose 2 group (treated with 5μM BαP). 
 
 

1 = IGF-1 exon 1 
2 = IGF-1 exon 2 
3 = IGF-1 exon 3 
4 = IGF-1 exon 4  

  1  2   3  4  1  2  3  4  1  2  3  4 
  Control     Dose 1     Dose 2 
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Figure 19. Analysis of PCR amplification bands using NIH Image, Scion Image for Windows 
software. GAPDH is the internal normalizer. The brightness of the IGF-I exon amplification bands 
was compared against the brightness of the GAPDH bands. The control group is untreated. Dose 1 
and dose 2 were treated with 1μM BαP and 5μM BαP, respectively. 
 

 
 

 
 CONTROL  DOSE 1     DOSE 2 
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Discussion

 
IGF-I has been implicated in IUGR. One common cause of IUGR is cigarette 

smoking during pregnancy. BαP is a commonly studied mutagen found in cigarette 

smoke. This study looked at the effects of BαP on the IGF-I gene through methods of 

cytogenetic analysis, mitotic index determination, and PCR of cDNA. The cells studied 

were from a human placental cell line.  

Cytogenetics is the study of chromosome number, structure, function, and 

behavior in relation to gene inheritance, organization and expression. Cytogenetic 

analysis is used to study and diagnose many different diseases, from malignancies, such 

as head and neck cancer (95) and leukemia, to Trisomy 21 to pesticide exposure (96). In 

cytogenetic analysis, there are two types of aberrations: structural and numerical. A 

numerical aberration is a change in the number of chromosomes from the normal number 

characteristic of the cells utilized. A structural aberration is a change in chromosome 

structure detectable by microscopic examination of the metaphase stage of cell division, 

observed as deletions and fragments, intrachanges, and interchanges (97). There are two 

types of structural aberrations: chromatid and chromosome. Table 5 gives examples of 

the different types of chromosomal aberrations.  
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Table 5. Major categories of chromosomal aberrations (98-100). 

STRUCTURAL CHROMOSOMAL 
ABERRATIONS 

NUMERICAL CHROMOSOMAL 
ABERRATIONS 

Chromosomal breaks 
Isochromatid gaps 
Dicentrics and rings 
Chromatid breaks 
Chromatid gaps 
Fusion 
Deletions 
Translocations 
Fragmentation 
Chromosomal stickiness 
Chromosomal clumping 
Chromosomal contraction 

Aneuploidy 
 Hyperploid (polyploidy) 
 Hypoploid 

 

The chromosomal analysis revealed aberrations amongst the BαP-treated groups. 

Dose 1 (treated with 1μM BαP) showed hypoploidy, clumping, contraction, stickiness, 

and ringed chromosomes. Dose 2 (treated with 5μM BαP) showed polyploidy, clumping, 

and stickiness. Schmidt et al performed cytogenetic analysis on benzpyrene-induced 

osteosarcomas in the rat. They found mainly aneuploidy (abnormal chromosome number) 

and translocation (interchange of parts between nonhomologous chromosomes) (101). 

Benzpyrene is another name for BαP (102). 

Chromosomal stickiness was first described by Gaulder (103) in 1987. Gaulden 

proposed stickiness as a possible cause of mutagen-induced structural chromosome 

aberration without DNA interaction (104). Rayburn and Wetzel describe sticky 

chromosomes as a consequence of genetic mutations or environmental effects on mitosis 

and meiosis (105). Chromosomal stickiness has been described in numerous studies (106-

108). 
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Chromosomes from the control group (untreated) are shown in figure 5, revealing 

normal chromosomes, with the centromeres intact and the correct diploid number of 46. 

Figures 6 and 7 also show normal chromosomes and reveal similar findings to Figure 5. 

Chromosomes from the dose 1 group are shown in Figure 8. It is obvious that the 

chromosomes appear aberrant. They are hypoploidic and contracted. Like Figure 8, the 

chromosomes in Figure 9 are hypoploidic and contracted. They also appear to be 

clumped. Khokhar et al exposed plant root tips to radiation and found chromosomal 

clumping (109). In figure 10 the chromosomes are so clumped as to be almost 

indistinguishable. The chromosomes in figure 11 reveal a ringed chromosome. Ringed 

chromosomes result when one broken end of a chromosome becomes sticky and fuses 

with the other end. Ringed chromosomes are found in malignancies, such as 

nonrhabdomyosarcoma soft tissue sarcomas (110) and acute myelofibrosis (111). 

Two examples of chromosomes treated with dose 2 are shown in figures 12 and 

13. Both show polyploidy. In addition to polyploidy, Figure 13 reveals clumping and 

stickiness. It is interesting to note that the chromosomal aberrations differ amongst the 

two doses of treatment groups. Dose 1 resulted in mostly hypoploidy, while dose 2 

resulted in hyperploidy. Many different types of chromosomal anomalies from BαP 

exposure have been described here. We speculate that the genetic material of the 

developing fetus is prone to the same adverse effects of BαP as the chromosomes from 

this study.  

BαP affects the cell cycle, as indicated by the mitotic indices of the control and 

treated cells (see Figure 14). In the mitotic index analysis, cellular proliferation was 

significantly reduced in the treated group versus the control group (p=0.0447). Mitotic 
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index (MI) is the fraction of cells in a microscope field which contain condensed 

chromosomes. MI is a method of quantifying cellular proliferation. In this study, the 

mitotic index was done in order to look at the effects of BαP on cell proliferation in 

human placental cells. This type of analysis was done by Bresgan et al where they looked 

at the effects of a ß-carotene breakdown products on rat hepatocytes (112). Another study 

looked at the effects of BαP on mouse skin and tumor production and found a dose-

dependent increase in the mitotic index (113). 

This study has shown through traditional PCR analysis that BαP affects DNA at 

the genomic level. This study focused on the IGF-I gene due to its various implications in 

fetal growth restriction. A review of the literature on gene mutations and polymorphisms 

of IGF-I and the IGF family that resulted in developmental impairment is shown in Table 

6 and Table 7, respectively. 
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Table 6. Phenotypic effects of described Insulin-like Growth Factor-I (IGF-I) mutations. Numerous 
studies have described the phenotypic effects of mutations in the IGF-I gene. The IGF-I gene is found 
on chromosome 12 (12q22-qter) and contains 6 exons. The mRNA is alternatively spliced to produce 
IGF-IA (153 amino acids) and IGF-IB (195 amino acids). *Cytosine-adenosine. **diabetes mellitus 
type II, myocardial infarction. ***wild-type allele 192/192 

Genotype Location Phenotype Physiologic 
Effect Report 

Deletion of 
exons 4 & 5 

IGF-I Severe growth 
restriction 

 Laron 2001 
(59) 

Polymorphism 
HindIII, PvuII 

IGF-I exon 5   Rotwein et 
al 1986 
(114) 

Homozygous 
deletion of 
exons 4 & 5 

IGF-I Growth failure, 
deafness, 
mental 
retardation 

 Woods et al 
1996 (70) 

CA* repeats 1 kb upstream 
from 
transcription 
start site, IGF-I 

Increased risk 
DMII and MI**

 tHart, et al 
2004 (115) 

Polymorphism 
allele 191*** 

IGF-I Persistent short 
stature 

 Arends et al 
2002 (116) 

T→A 
transversion 

Polyadenylation 
signal in 3’ 
untranslated 
region of exon 
6 of IGF-I 

Severe growth 
restriction 

 Bonapace 
et al 2003 
(71) 

Missense 
mutation, 
Val44Met IGF-I 
(G247A) 

Position 44, 
methionine 
instead of 
valanine 

Severe growth 
restriction and 
mental 
retardation, 
deafness 

90-fold ↓ 
affinity for 
IGF-IR ; ↓ 
activation of 
downstream 
signaling  
pathways 

Denley et al
2005 (117) 
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Table 7. Phenotypic effects of described Insulin-like Growth Factor (IGF) family mutations. The IGF 
family consists of IGF-I, IGF-II, the IGF receptors (IGF-IR and IGF-IIR), and the IGF binding 
proteins (IGFBP) 1-6. 

 
 
 

 

 

 

 

 

 

Genotype Location Phenotype Report 
IGF2/ApaI IGF-II High BMI in 

young adults 
Gomes, et al 
2005 (118) 

Single base pair 
substitution in 
codon for 
amino acids 
108 & 115 

IGF-IR exon 2 Fetal & 
postnatal 
growth failure 

Abuzzahab et 
al 2003 (60) 

Point mutation 
CGA to TGA, 
heterozygous 

IGF-IR exon 2 Fetal & 
postnatal 
growth failure 

Abuzzahab et 
al 2003 (60), 
Kiess et al 2005 
(119) 

Gly1619arg IGF-IIR Small stature, 
age 3-7 years 

Petry et al 2005 
(120) 

 

 The brightness of the PCR amplification bands from each group (control, dose 1, 

and dose 2) was compared relative to the internal normalizer, GAPDH. There was a 

difference in the brightness, with the control having the most bright band, dose 1 the 

second-most bright band, and dose 2 having the least bright band. Since real-time PCR 

was not done, we can only speculate that there is a dose-dependent response between 

dose 1 and dose 2. In the future, real-time PCR would need to be done in order to 

thoroughly analyze the qualitative effect of BαP on the IGF-I gene. As shown in Figure 

18, the brightness of the bands for the gene products from treated cells are diminished 

compared to the control group. We speculate that BαP has deleterious effects on the IGF-

I gene. It is impossible to say from this study the mechanism by which BαP disrupts the 

IGF-I gene. Because of the possible dose-dependent disruption of BαP on the IGF-I gene, 

women who smoke during pregnancy, and find it difficult to quit, may reduce the risk of 

harm to the fetus by simply cutting down on the number of cigarettes smoked each day. 
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Complete smoking cessation would be the best way of decreasing the risk of fetal 

abnormalities, however. 

Intrauterine growth restriction is a serious problem. The immediate effects are 

harmful and costly. The potential long-term effect of cardiovascular disease is striking. 

Depending on the cause, there may be no cure for IUGR. Therefore, it is imperative that 

IUGR be prevented. One of the most preventable causes of IUGR is cigarette smoking 

during pregnancy. This study has shown that toxins in cigarettes are harmful to the fetus 

on many levels—at the genomic level, chromosomal level, and at the level of the 

placenta.
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